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Additional Information on Machine Learning Models 

The machine learning models and libraries discussed in this Perspective are available at the 
following GitHub link. These resources are intended for community use, allowing researchers to 
analyze their datasets or categorize materials into specific groups depending on their needs. We 
advise compiling materials databases from well-controlled experimental conditions and 
including a comprehensive set of features to improve result accuracy. Additionally, we 
encourage exploring other tools and models to leverage machine learning in electrocatalysis. 

 

Supporting note: Constructing decision trees using gradient boosting. 

The gradient boosting technique, which involves a series of decision trees, each acting as a weak 
learner, builds each successive tree on the deficiencies of its predecessors to enhance the overall 
model. However, in our study, the XGBoost model produced only one tree. Three main factors 
explain this outcome:  

First, after extensive testing with various machine learning models, such as Linear Regression 
and Support Vector Machines using a Linear Kernel, we discovered that the independent and 
dependent variables in our dataset exhibited a simple linear relationship. In such scenarios, 
adding more trees would not improve model performance and might lead to overfitting.  

Second, we implemented early stopping to prevent overfitting and ensure the model's 
effectiveness on unseen data. This technique halts the training process when the model's 
performance on a validation set meets a predefined threshold. In our case, this criterion was 
satisfied after just one tree, resulting in an XGBoost model composed of this single tree. 

Third, we carefully screened our transition metal (TM) X-ide datasets to ensure a fair 
comparison under homogeneous testing conditions. We removed certain entries because they 
used different electrolytes (e.g., NaOH) or due to incomplete data provided in the study. 
Consequently, our datasets became relatively small after this screening. More complex models 
with multiple trees could overfit and underperform on new, unseen data. Thus, employing a 
single-tree model promotes simplicity and reduces the risk of overfitting, making it preferable 
when working with small datasets. 

We utilized the plot_tree function from the XGBoost library to visualize the resulting trees, 
shown in Figures 5a, S13, and S14, for TM selenides, phosphides, and sulfides, respectively.   

https://github.com/eoefelein/Understanding-Performance-Trends-Using-Machine-Learning/tree/main
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Supporting Figures, Tables, and Schemes 

 
Figure S1. Pourbaix diagram for Co3B. The plot was adapted from the diagram generated using 
the Materials Project.39–42  Ion concentration: 10-5 mol·L-1.  

 

 
Figure S2. Pourbaix diagram for Co3C. The plot was adapted from the diagram generated using 
the Materials Project.39–42  Ion concentration: 10-5 mol·L-1.   
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Figure S3. Pourbaix diagram for Co3N. The plot was adapted from the diagram generated using 
the Materials Project.39–42  Ion concentration: 10-5 mol·L-1. 

 

 
Figure S4. Pourbaix diagram for Co3S4. The plot was adapted from the diagram generated using 
the Materials Project.39–42  Ion concentration: 10-5 mol·L-1. 
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Figure S5. Pourbaix diagram for Co3Se4. The plot was adapted from the diagram generated 
using the Materials Project.39–42  Ion concentration: 10-5 mol·L-1. 

 
 
 

 
Figure S6. Pourbaix diagram for Ni2B. The plot was adapted from the diagram generated using 
the Materials Project.39–42  Ion concentration: 10-5 mol·L-1. 
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Figure S7. Pourbaix diagram for Ni3C. The plot was adapted from the diagram generated using 
the Materials Project.39–42  Ion concentration: 10-5 mol·L-1. 

 
 
 

 
Figure S8. Pourbaix diagram for Ni3N. The plot was adapted from the diagram generated using 
the Materials Project.39–42  Ion concentration: 10-5 mol·L-1. 
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Figure S9. Pourbaix diagram for Ni2P. The plot was adapted from the diagram generated using 
the Materials Project.39–42  Ion concentration: 10-5 mol·L-1. 

 
 

 
Figure S10. Pourbaix diagram for Ni3S4. The plot was adapted from the diagram generated using 
the Materials Project.39–42  Ion concentration: 10-5 mol·L-1. 
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Figure S11. Pourbaix diagram for Ni3Se4. The plot was adapted from the diagram generated 
using the Materials Project.39–42  Ion concentration: 10-5 mol·L-1. 
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Figure S12. Pourbaix diagram for NiTe. The plot was adapted from the diagram generated using 
the Materials Project.39–42  Ion concentration: 10-5 mol·L-1. 
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Figure S13. Decision tree for the TM phosphide dataset. A blue arrow denotes a catalyst node 
with identical features, while a red arrow indicates a precatalyst node. The leaves symbolize the 
purest nodes for each catalyst and precatalyst subgroup. A total of 126 data points, each 
representing a TM phosphide material from our compilation, were analyzed. 

 

Supporting note: The following codes apply for the decision trees and force plots of the TM 
phosphide, sulfide, and selenide databases:  
Substrate type: "Glassy carbon": 0, "carbon cloth": 1, "graphite": 2, "Au glass": 3, "carbon 
foam": 4, "Cu foil": 5, "FeNi foam": 6, "Ni foam": 7, "carbon fiber paper": 8, "Pt sheet": 9, 
"carbon paper": 10, "NiFe alloy": 11, "Fe foam": 12, "Ti mesh": 13, "Cu mesh": 14.  
Deposition method: "Self-supported electrode": 1, "powder-coated electrode": 2. 
Initial elemental content: "Element present": 0, "no element present": 1. 
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Figure S14. Decision tree for the TM sulfide dataset. A blue arrow denotes a catalyst node with 
identical features, while a red arrow indicates a precatalyst node. The leaves symbolize the purest 
nodes for each catalyst and precatalyst subgroup. A total of 104 data points, each representing a 
TM phosphide material from our compilation, were analyzed. 
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Figure S15. Decision plot for the TM phosphide dataset. Each colored line represents a single 
TM phosphide electrocatalyst from our compilation of the literature. Blue lines represent a 
catalyst classification, whereas red lines denote a precatalyst. The features are ranked in 
descending order based on their importance to the model, with the most influential feature at the 
top. A total of 126 data points, each representing a TM phosphide material from our compilation, 
were analyzed. 
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Figure S16. Decision plot for the TM sulfide dataset. Each colored line represents a single TM 
phosphide electrocatalyst from our compilation of the literature. Blue lines represent a catalyst 
classification, whereas red lines denote a precatalyst. The features are ranked in descending order 
based on their importance to the model, with the most influential feature at the top. A total of 126 
data points, each representing a TM phosphide material from our compilation, were analyzed. 
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Figure S17. Force plots for a single (a) catalyst and (b) precatalyst from the TM phosphide 
dataset. The bars represent the contribution of specific features to the classification as either a 
catalyst (blue) or a precatalyst (red). These features are ranked in descending order of importance 
to the model, with the most influential feature at the top. 
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Figure S18. Force plots for a single (a) catalyst and (b) precatalyst from the TM sulfide dataset. 
The bars represent the contribution of a specific feature towards the catalyst (blue) and 
precatalyst (red) classification. The features are ranked in descending order based on their 
importance to the model, with the most influential feature at the top. 
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